Radiation Processing

of
Advanced Composites




Industrial Applications for Fibre-Reinforced
Advanced Composites

« Aerospace

« Aircraft

» Sports Equipment

« Automobile

« Marine

« Miscellaneous Consumer Items
« Importance

* High strength to weight and stiffness
to weight ratios

Annual Consumption: 1.5 x 10° kg/a
Growth: ~15%/a




Thermal vs Electron Curing
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Advantages
Electron Processing

® Ambient temperature cure reduces internal stresses
Thermal curing: stresses at fibre matrix interface
- precision of part dimensions affected

® Reduced curing times:
Thermal: ~ 200 kg.-h'
Electron (50kW IMPELA): ~ 600 kg h!

¢ Reduced costs
- improved resin stability at room temperature
- parts cured immediately upon fabrication
- energy costs for electron processing much lower
Overall, cost reductions can be 30% or more.




EB Curing - Constraints

® EB curable materials required

® Qualification procedures

® More complex, if pressure required during curing




Primary Components of
Radiation Curable
Formulations

Multifunctional acrylates
Acrylated oligomers
Monofunctional diluent monomers
Epoxies with radiation-initiators
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Typical Properties
Resins For Filament/Tape Winding

Epoxies* Acrylated Epoxies™
Property #1 #2 #3 Difunc Tetrafunc
A B C D
Ultimate Tensile (85 60 90 65 75 50 60
Strength (MPa)
Tensile Modulus | 3 2.5 3 3 3 3 3
(GPa)

Elongation (%) 4-6 10 5 5 3 13 2
Glass Transition

Temperature (°C) |145 100 175 120 120 85 180

* Thermally Cured; ** EB-Cured




Chemical Forms of EB-Curable
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Relative Product Characteristics
for Selected Resins

Property Selected Resins
SR-399 | SR-2000 | SR-5000 | SR-9503 | SR-3000
Abrasion Resistance X X | X
Adhesion X lx o bx b X
Chemical Resistancel X |\ | I X .
Flexibility X X X X 1
Hardness | S T S I . S
impact Resistance | | X ool SR S A |
Low Shrinkage | 1" X | X | X | X
Water Resistance | | S S F A S

Weatherability X X

X-imparts specified property to the cured polymer




Gamma Calorimetry

Sample Reference
Cell Cell

Insulating
Jacket




Typical Gamma Calorimetry Plot
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Whiteshell Irradiator 1-10/1




Carbon-fibre Epoxy Lay-up

Vacuum bag

Polyester breather cloth

Aluminum plate
Polyamide
release cloth

Teflon release film (perforated)

Prepreg
e — Aluminum plate
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Pultrusion

Accelerator Horn

Guide Rolis

Puller Roils
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Material selection
* Resins * Fibers
* Interface chemistry

* Adhesives

w,% v 3y
S i

e Consolidation

G

= Fabrication

Layup * Tape placement
* VARTM * Filament winding
" EB Cure/QA




Typical Mechanical Properties
EB-Cured Carbon Fabric Laminates

| ~ Minimum i Sample
. Specifications | Properties
| Minimum
Value

Property

Average | Value Average

Tensile:
Strength, MPa

Modulus, GPa

Compression:
Strength, MPa

Modulus, GPa

14-ply; same orientation; tested at 20°C’




Gel Fraction

C3000 (Epoxy diacrylate)
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Glass Transition Temperature
Electron-cured Resins and Blends
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A: 10% pentaacrylate; B: 25% pentaacrylate




Effect of Electron Dose
Glass Transition Temperature
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Temperature Profile During Curing
Electron Treatment

Electrons
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Temperature Profile During Curing
X-Ray Treatment

X-rays
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Amount of Volatiles Released from
Selected Matrix Polymers During Curing

Curing Curing Cycle |Volatiles
Method Material @25°C (mg/q)
Electron CN-104 50-100 kGy < 0.005
Electron CN-114 50-100 kGy < 0.005
Electron Derakane
470-36 50 kGy 0.75*

Catalyst Derakane

470-36 20 min 3.0
Thermal Hysol epoxy |2 hr @ 150°C 3.45

RE-2039
Thermal PMR-15 300°C 1.38

* blank = 0.78




Aerospatiale’s Composites Program

R&D started, early eighties
Endorsed technology (1987)

Commercial facility approved (1988);
operational in 1991

Designed to cure tape-wound products
Diameter, 0.1 to 4.0 m
Length, 1.5t0 10.5m
Thickness, 1 to 10 cm

10 MeV, 20 kW accelerator
Cure time reduced, 100 to 8 hours
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AECL
Accelerators

Typical X-Ray Conversion

i
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Composite Composite

< 2.5¢chm
> 2.5¢cm
< 20 cm




CRADA

Cooperative Research & Development Agreement

Obnjective

to conduct R&D to better understand and utilize
electron beam polymer matrx 22~00site curing
technology

3 years.

Value: SCdn 9 million
S 4.5 million contributed by industriat zartners
$ 4.5 million contributed by US DOE

Partnership
10 industrial partners
2 national laboratories

Areas of study

- Electron beam resin development

- Electron beam database development

- Economic analysis

- Low-cost electron beam tooling development
- Electron beam curing systems integration

- Demonstrate protype structures




EB Curing Technhology Development Program
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Radiation Curing of Epoxies
in Mixtures

e Epoxy - Catalyst Mixtures

- The addition of primary amines, ferrocene,
triphenylsuifonium borofluoride,
phenyldiazonium borofluoride,
diphenyidiazonium borofluoride and
maleic anhydride have been used to reduce the
dose required for radiation polymerization of
certain epoxies

- No universal promoter discovered to date




Epoxy Resin Families

Bisphenol A based
Bisphenol F based
Cycloaliphatic based
Multifunctional
Blends of the above




Optimizing Properties of EB-Curable
Fiber Reinforced Composites

Most Efficient Cationic Initiator
Initiator Concentration

Curing Dose

Dose Rate and Radiation Type
Epoxy Mixture for end-use
Fiber Sizing

Processing Conditions




Cationic Intiators

SbF; > AsF, > PE, > BF,

e, e(x), vy, UV
Ar*MF; =i H*MF
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Effects.of Initiators on Curing Dose
EPON 8K
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Concentration Effects on Curing Dose
EPON 862: OPPI, Gatnria ¢ alavimatry
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Concentration Effects on Tan(delta)
EPON 862; UVIES74, ER ( voed 100 kGy

Tan{deltaj

Temperature, C



Curing and Rheological Properties

Curing Service
Dose Yemparature Tg(E”)
Initiator " kGy "C °C
Epon 862 | UVI6974 102
CD1012 156
OPPI 154
DW1 155

Tactix 123 | UVI6974 92
CD1012
oPP|
Dwi1




Curing and Rheological Properties

« Optimum initiator concentration 2-3 phr
« Curing dose changes with the initiator used

« Rheological properties change with the initiator
used




Effect of Cure Temperature
on Internal Stress

133°C;EB-5; IM-7; 2-ply; 50% RH



Features of EB-Curable Resins

EB-Curable Thermosetting
Features Epoxy _ Epoxy

Mechanical Properties high-performance high-performance
Manufacturing Costs moderate high

Prepreg Storage/Handling jextended life @ 20°C [limited life @ 0°C
Environmental Concerns | low moderate to high
Shrinkage on Curing (%) 4-6

Volatile Emissions (% ) <0.1 <1.0

Transition Temp. (°C) up to 400 up to 300
Residual Stresses low moderate to high

Water Absorption (%) <6

Prodiiction Throiighpit Slow



Features of EB-Curable Resins

Features

EB-Curable
Epoxy

Thermosctting
Epoxy

Thickness Limit

Tooling Materials

Tooling Costs

Cure Time (10-mm-thick)
Encrgy Requirements
Capital Cost (facility)

M aterials Availability

Miaterial Cost - complete
systein ($/1b)

S0mm (EB)
200 mm (X-ray)

metals, wood,
ceramics, plastics,
waxes, foams
low-moderate
seconds-minutes
low to moderate

high

Resins/Initiators
Available

2-5 {(commercial),
8-20 (high-perf.)

20 mm

metals, ceramics,
graphite
moderate-high
hours

moderate to high

high to very high

Resins/Ilardeners
Available

2-4 {commercial),
8-20 (high-perf.)




EB Curable Adhesives
Advantages

Room temperature curing
Internal stress much lower
Energy efficient

Faster curing cycle

Lower volatile emmissions




Interface Chemistry
- EB-Curable Adhesives

]

Graphite



Effect of Bond Gap
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Status

- Work started by Aerospatiale (~ 1983) and by us
(~1986)

- Led to Aerospatiale dedicating (1988-1991) a 10
MeV, 20 kW electron accelerator to production of
rocket motor casings (carbon fibre reinforced
acrylated epoxy)

- We demonstrated production of thin and thick
laminates of advanced composites using acrylated
epoxies

- Led to extensive collaboration with North American
aerospace industry

« Developed radiation curing of epoxies used by
aerospace industry

« Feasibility studies on use of technology by the
aerospace industry very positive




Adhesive Shear sirengihs
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Concluding Remarks

Electron processing of advanced
composites, at the threshold of
commercialization

Several types of fibre-reinforced
composites can be electron processed

Availability of 10-MeV industrial electron
accelerators, important for this application

Very large components can be radiation cured,
with large enough target room

Abilit){ to join composite parts with radiation-
curable adhesives, an added advantage
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